Food Production for Space: A Review of Some NASA Activities

Raymond M. Wheeler NASA Surface Systems Office Kennedy Space Center, Florida, USA

raymond.m.wheeler@nasa.gov

Food Production Workshop, NASA ARC September 2012

Human Life Support Requirements:

Inputs

	Daily Rqmt.	(% total mass)
Oxygen	0.83 kg	2.7%
Food	0.62 kg	2.0%
Water (drink and food pre		11.4%
Water (hygiene, laundry,		83.9%
TOT	24.04	

Outputs

	Daily	(% total
		mass)
Carbon dioxide	1.00 kg	3.2%
Metabolic solids	0.11 kg	0.35%
Water	29.95 kg	96.5%
(metabolic	12.3%)	
(hygiene / f	24.7%)	
(laundry / dish		55.7%)
(latent		3.6%)

TOTAL 31.0 kg

Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document Food assumed to be dry except for chemically-bound water.

Early Studies Focused on Algae and Cyanobacteria (1950s and 1960s)

- Chlorella pyrenoidosa TX71105 (thermotolerant 39°C)
- Other species of *Chlorella*, *Anacystis*, *Synechocystis*, *Scenedesmus*, *Synechococcus*, *Spirulina* were studied
- Development of culture systems (chemostats, turbidostats)
- Protocols for harvesting and nutrient replenishment
- Studies with animals (e.g., mice, monkeys) and humans
- Interest in Assimilation and Respiration Quotients (AQ and RQ)

Observations from Algae / Cyano Studies:

- Positives
 - high photosynthetic efficiency and biomass productivity
 - good volume efficiency
 - good energy efficiency--minimum wastage of light
- Negatives
 - difficulties with food processing / palatability
 - long-term, sustained production challenges
 - gas / liquid phase issues for μ-gravity
 - no transpiration advantage for water purification
 - not convenient for point source lamps

Bioregenerative Life Support for Space:

Some Reviews of Work in 1950s and 1960s:

- Eley, J.H. and J. Myers. 1963. A study of a photosynthetic gas exchanger. A quantitative repetition of the Priestley Experiment. Texas J. Sci. 16:296-333.
- Miller, R.L. and C.H. Ward. 1966. Algal bioregenerative systems. In K. Kammermeyer (ed.) Atmosphere in Space Cabins and Closed Environments. Appleton-Century-Croft, NY.
- Taub, F.B. 1974. Closed ecological systems. *In*: R.F. Johnston, P.W. Frank, and C.D. Michener (*eds.*) Annual review of Ecology and Systematics. 5; 139-160.

Testing with Higher Plants and the CELSS Program

- Higher plants (crops) more acceptable as a food source
- Improved productivity of plants in controlled environment agriculture (CEA)
 - Hydroponic culture
 - HID Lighting
 - CO₂ enrichment
- Broad information base on agronomic spp.

Josef Gitelson and Henry Lisovsky at Bios 3 Facility in Krasnoyark, Siberia Algae testing in 1960s and then primarily higher plants in 1970s and 1980s

Tibbitts and Alford "	Hoff, Howe, and Mitchell ^b	Salisbury and Clark ⁶	Crops Used in BIOS-3 Testing
Wheat	Wheat	Wheat	Wheat
Soybean	Potato	Rice	Potato
Potato	Soybean	Sweetpotato	Carrot
Lettuce	Rice	Broccoli	Radish
Sweetpotato	Peanut	Kale	Beet
Peanut	Dry Bean	Lettuce	Nut Sedge
Rice	Tomato	Carrot	Onion
Sugar Beet	Carrot	Rape Seed (Canola)	Cabbage
Pea	Chard	Soybean	Tomato
Taro	Cabbage	Peanut	Pea
Winged Bean		Chickpea	Dill
Broccoli		Lentil	Cucumber
Onion		Tomato	Salad spp.
Strawberry		Onion	
		Chili Pepper	

Plants	Humans	
Nitrogen Potassium Calcium Magnesium Phosphorus Sulfur Manganese Iron Chlorine Zinc Copper Molybdenum Nickel	Nitrogen Potassium Calcium Magnesium Phosphorus Sulfur Manganese Iron Chorine Zinc Copper Molybdenum Nickel	Sodium Fluorine Iodine Selenium Silicon Chromium Arsenic Vanadium Tin

Higher Plants to Support 1 Human

(Includes Food, O₂, CO₂ Removal and Water Purification)

- \rightarrow (20 g m⁻² d⁻¹ dwt yield) x (4 kcal g⁻¹)
 - $= 80 \text{ kcal m}^{-2} \text{ d}^{-1}$
- \rightarrow (2500 kcal person⁻¹ d⁻¹) / (80 kcal m⁻² d⁻¹)
 - $=31 \text{ m}^2 \text{ person}^{-1}$
 - $\dots 40 \text{ m}^2 / \text{person}$
- → Japanese IES Studies, 100-120 m² / person for more complete dietary needs.

